Journal of Organometallic Chemistry, 280 (1985) 183-196 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

UBER POLYGERMANE

XIII *. PERGERMA-ANALOGA VON DIOXAN $Ph_8Ge_4X_2$ UND ETHYLENACETAL $Ph_6Ge_3X_2$ (X = O, S, Se)

MARTIN DRÄGER* und KARL HÄBERLE

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim Becher-Weg 24, D-6500 Mainz (Deutschland)

(Eingegangen den 26. Juli 1984)

Summary

[(Cl₃CCOO)Ph₂Ge]₂ reacts with wet acetone to give Ph₈Ge₄O₂, and with dry H₂S to give Ph₈Ge₄S₂. With Na₂S or NaHSe, Ph₄Ge₂Cl₂ yields Ph₈Ge₄S₂ and Ph₈Ge₄Se₂, respectively. Only Ph₆Ge₃S₂ or Ph₆Ge₃Se₂, but no Ph₆Ge₃O₂, can be obtained from a mixture of Ph₄Ge₂Cl₂, Ph₂GeCl₂ and Na₂S or NaHSe. The mass spectra show a high stability of the cations Ph₆Ge₃S₂⁺ and Ph₆Ge₃Se₂⁺. The ¹³C NMR phenyl signals for C(*ipso*) shift to high field in the series O, S, Se and 6-membered, 5-membered rings. The crystal structures of Ph₈Ge₄O₂ (R = 0.031) and Ph₆Ge₃S₂ (R = 0.036) have been determined. The 6-membered ring Ge₄O₂ has the chair conformation (total symmetry of the molecule is approximately C_{2h}, distances Ge-Ge 244.8(1) and Ge-O 178-179 pm, angle Ge-O-Ge 126.9(1)°). The 5-membered ring Ge₃Se₂ has the half-chair conformation (total symmetry of the molecule is approximately C₂, distances Ge-Ge 241.5(1) and Ge-Se 236-237 pm).

Zusammenfassung

[(Cl₃CCOO)Ph₂Ge]₂ reagiert in feuchtem Aceton zu Ph₈Ge₄O₂, mit trockenem H₂S zu Ph₈Ge₄S₂. Ph₄Ge₂Cl₂ gibt mit Na₂S, bzw. NaHSe Ph₈Ge₄S₂ und Ph₈Ge₄Se₂. Aus einem Reaktionsgemisch von Ph₄Ge₂Cl₂, Ph₂GeCl₂ und Na₂S, bzw. NaHSe lassen sich Ph₆Ge₃S₂ und Ph₆Ge₃Se₂ gewinnen, dagegen nicht Ph₆Ge₃O₂. Massenspektren beweisen eine hohe Stabilität der 5-Ring-Kationen Ph₆Ge₃S₂⁺ und Ph₆Ge₃Se₂⁺. ¹³C-NMR Phenylsignale zeigen für C(*ipso*) eine Hochfeldverschiebung in den Reihen X = O, S, Se und 6-Ring zu 5-Ring. Die Kristallstrukturen von Ph₈Ge₄O₂ (R = 0.031) und Ph₆Ge₃Se₂ (R = 0.036) wurden bestimmt. Der Ge₄O₂-6-Ring hat Sessel-Konformation (angenäherte Gesamtsymmetrie des Moleküls C_{2h} , Abstände Ge–Ge 244.8 (1) und Ge–O 178–179 pm, Winkel Ge–O–Ge 126.9(1)°). Der Ge₃Se₂-Ring hat Halbsessel-Konformation (angenäherte Gesamtsymmetrie des Moleküls C_2 , Abstände Ge–Ge 241.5(1) und Ge–Se 236–237 pm).

^{*} Mitteilung, Für XII siehe Lit. 1.

Einleitung

Mit der allgemeinen Zielsetzung "Synthese und strukturelle Charakterisierung von Pergerma-Analoga der grundlegenden Heterocyclen der organischen Chemie" beschrieben wir eine Reihe von Tetrahydrofuran-Analoga ($Ph_2Ge)_4X$ mit X = O, S, Se und Te [2]. Anknüpfend an die Optimierung der Synthese der beiden difunktionellen Digermane Y-Ph₂Ge-GePh₂-Y mit Y = Trichloracetyl und Cl [3] berichten wir hier über einige Analoga zu Dioxan Ph₈Ge₄X₂ und Ethylenacetal Ph₆Ge₃X₂.

Der Tetragermadioxan-Grundtyp $R_8Ge_4O_2$ ist schon seit längerem bekannt (R = Bu [4], R = Ph [5,6]), Triplett und Curtis [7] synthetisierten die beiden analogen Heterocyclen Me₈Ge₄ [Fe(CO)₄]₂ und Me₆Ge₃[Fe(CO)₄]₂.

Synthese

Das Formelschema 1 fasst die von uns durchgeführten Synthesen zusammen, Tabelle 1 enthält Analysenwerte und Schmelzpunkte.

Dioxan-Analoga

 $Ph_8Ge_4O_2$ wird durch Hydrolyse des Diesters $[(Cl_3CCOO)Ph_2Ge]_2$ mit feuchtem Aceton in guter Ausbeute erhalten. Ebenso entsteht $Ph_8Ge_4S_2$ beim Einleiten von trocknem H₂S-Gas in eine acetonische Suspension des Diesters.

Wird der Diester mit einer wässrigen Lösung von Natriumsulfid umgesetzt, so entsteht neben $Ph_8Ge_4O_2$ und $Ph_8Ge_4S_2$ eine dritte Substanz, die nach Massenspektrum (Molmasse 956) und Raman-Spektrum ($\nu(Ge-S)$ 393 cm⁻¹) das gemischte Dioxan-Analogon Ph_8Ge_4OS sein könnte. Eine Trennung der drei Komponenten war nicht möglich.

Wird das Dichlorid ClPh₂Ge-GePh₂Cl mit wässrigem Na₂S, NaHSe [8] oder NaHTe [9] umgesetzt, so entstehen die Chalkogenide Ph₈Ge₄X₂ mit X = S, Se und Te. Das Ditellurid war nicht unzersetzt isolierbar. Bei der Reaktion des Dichlorids mit Natronlauge entsteht nicht der dioxananaloge Ring Ph₈Ge₄O₂, sondern ausschliesslich das trimere (Ph₂GeO)₃ [10].

Ethylenacetal-Analoga

Eine gezielte Synthese der fünfgliedrigen Heterocyclen $Ph_6Ge_3X_2$ ist prinzipiell möglich durch Umsetzung eines äquimolaren Gemisches der Dichloride $ClPh_2Ge-GePh_2Cl$ und Ph_2GeCl_2 mit Chalkogenid. Neben- oder gar Hauptprodukte sind jedoch stets auch die Dioxan-Analoga und die alternierenden 6-, bzw. 8-Ringe (Ph_2GeO)_{3,4}, die im Falle einer Spaltung des Digermans zum alleinigen Produkt werden.

Für X = O wurde unter den verschiedensten Reaktionsbedingungen meist der 6-Ring (Ph_2GeO)₃, teilweise auch der 8-Ring (Ph_2GeO)₄ erhalten. Die Nichtentstehung des $Ph_6Ge_3O_2$ hat sterische Gründe: der normale Ge-O-Ge-Winkel von ca. 130° [10] kann in einem Ge₃O₂-5-Ring nicht verwirklicht werden.

Im Falle von X = S oder Se können die besser löslichen 5-Ringe durch Extraktion des eingedampften Produktgemisches mit Methanol (X = S) oder durch Ausfällen des 6-Ringes aus Chloroform-Lösung (X = Se) gewonnen werden. Alternierende Ringe treten nicht auf.

Spektroskopische Daten

Massenspektren

Tabelle 2 enthält die oberhalb m/e = 150 beobachteten Massenfragmente der synthetisierten fünf Verbindungen. Die Verdampfungstemperatur lag stets in der Nähe des Schmelzpunktes der unzersetzt schmelzenden Substanzen. Die ausgeprägten Isotopenmuster ermöglichten eine eindeutige Zuordnung der Fragmente; einige der selenhaltigen Bruchstücke überlagern sich.

Alle fünf Verbindungen zeigen einen Molekülpeak. 100%-Peak ist stets Ph_3Ge^+ , das ebenso wie die Fragmente $Ph_5Ge_2X^+$ und $Ph_5Ge_2^+$ durch Phenylgruppenwanderung entstanden ist. Analoge Phenylgruppenwanderungen erfolgen auch bei den Tetrahydrofuran-Analoga (Ph_2Ge)₄X [2].

Bei den Dioxan-Analoga mit X = S und Se ist das Fragment $Ph_6Ge_3X_2^+$ deutlich stärker als bei dem Homologen mit X = O. Dies deutet darauf hin, dass sich nach Abspaltung einer Ph_2Ge -Einheit aus dem Molekülkation der verbleibende Rest zum relativ stabilen 5-Ring-Kation schliesst. Dieses ist im Einklang mit der hohen Intensität der entsprechenden Molekülpeaks bei den Ethylenacetal-Analoga.

	Ph ₈ Ge4O2	Ph ₈ Ge ₄ S ₂	Ph ₈ Ge ₄ Se ₂	$Ph_6Ge_3S_2$	$Ph_6Ge_3Se_2$	
Summenformel	$C_{48}H_{40}Ge_4O_2$	C ₄₈ H ₄₀ Ge ₄ S ₂	$C_{48}H_{40}Ge_4Se_2$	C ₁₆ H ₃₀ Ge ₃ S ₂	C ₃₆ H ₃₀ Ge ₃ Se ₂	
Molmasse	939.21	971.34	1065.12	744.54	838 33	
Gehalt Ge gef (ber) (%)	30.0 (30.92)	30.2 (29 89)	271 (2726)	28 7 (29 25)	24.8 (25 98)	
Gehalt C gef. (ber.) (%)	61.05 (61.38)	59.43 (59.35)	54 75 (54 13)	58.11 (58.08)	51 77 (51.78)	
Gehalt H gef. (ber.) (%)	4.40 (4 29)	4 02 (4.03)	3.80 (3 79)	3.99 (4.06)	3 87 (3 61)	
Gehalt S/Se gef. (ber.) (%)	I	6 63 (6.60)	14.85 (14.83)	8 91 (8 61)	18.86 (18 84)	
Fp. (°C) "	$217-219^{b}$	283-284	297-298	140-142	140-140.5	
Lösungsmittel	CHCI ₃	CHCI,	CHCI ³	CHCl ₃ /Methanol	CHCl ₃ /Methanol '	

TABELLE 1 ISOLIERTE VERBINDUNGEN

Ξģ.
en
đ
Ľ
or
>
å
lu
ĭ
çþ
š
Ŧ
5
¥
Ξ
പ്പ
n
2tz
Ň
2c
3
Ĕ
(a)
e G
laı
H
ÚSI.
Ĕ
Ę
Ŭ.
\mathcal{C}
0
1
- 1
16
C1
Ś
÷
Ľ
4
Ĭ
· • •
sta
Insta
Krista
de Krista
ende Krista
lzende Krista
nelzende Krista
hmelzende Krista
schmelzende Krista
ig schmelzende Krista
ung schmelzende Krista
stzung schmelzende Krista
rsetzung schmelzende Krista
Cersetzung schmelzende Krista
2 Zersetzung schmelzende Krista
me Zersetzung schmelzende Krista
ohne Zersetzung schmelzende Krista
2, ohne Zersetzung schmelzende Krista
oile, ohne Zersetzung schmelzende Krista
abile, ohne Zersetzung schmelzende Krista
tstabile, ohne Zersetzung schmelzende Krista
uftstabile, ohne Zersetzung schmelzende Krista
, luftstabile, ohne Zersetzung schmelzende Krista
se, luftstabile, ohne Zersetzung schmelzende Krista
olose, luftstabile, ohne Zersetzung schmelzende Krista
irblose, luftstabile, ohne Zersetzung schmelzende Krista

¹³C-NMR-Spektren

Tabelle 3 enthält die in $CDCl_3$ -Lösung gefundenen ¹³C-NMR-Signale der Phenylgruppen, jeweils ein Satz für die drei Dioxan-Analoga und zwei Sätze im Intensitätsverhältnis 1/2 für die beiden Ethylenacetal-Analoga.

Die ortho-, meta- und para-Signale der fünf Verbindungen zeigen jeweils keine grosse Streuung untereinander und stimmen näherungsweise mit den X-GePh₂-Phenylsignalen in den Tetrahydrofuran-Analoga (Ph₂Ge)₄X [2] überein. Dagegen sind die ¹³C-NMR-Phenylsignale in nicht an Heteroatome X angrenzenden Ph₂Ge-Gruppen in den Heterocyclen (Ph₂Ge)₄X [2] und den Homocyclen (Ph₂Ge)_{4,5,6} [11] für C(ortho) deutlich zu tieferem Feld, für C(meta und para) geringfügig aber systematisch zu höherem Feld verschoben. Die C(*ipso*)-Signale der 6-Ringe Ph₆Ge₄X₂ wandern in der Reihe X = O, S und Se in gleichem Ausmasse zu hohem Feld, wie es auch für die X-GePh₂-Signale der Heterocyclen (Ph₂Ge)₄X [2] gefunden wurde. Die Digerman-C(*ipso*)-Signale (Satz 2) der 5-Ringe Ph₆Ge₃X₂ zeigen im Vergleich dazu eine nochmalige Hochfeldverschiebung im Einklang mit den kleineren endocyclischen Bindungswinkeln an diesen Ge-Atomen (vgl. [11]).

TABELLE 2

MASSENSPEKTREN DER 6-RINGE $Ph_8Ge_4X_2$ UND DER 5-RINGE $Ph_6Ge_3X_2$ (Elektronenstossionisation 70 eV)

Verbindung	Ph ₈ Ge ₄ O ₂	Ph ₈ Ge ₄ S ₂	Ph ₈ Ge ₄ Se ₂	Ph ₆ Ge ₃ S ₂	Ph ₆ Ge ₃ Se ₂
Verdam-					
pfungstem-	200 ° C	240 ° C	300 ° C	140 ° C	140 ° C
peratur					
Fragment-	<i>m/e "</i> (Int.)	<i>m/e "</i> (Int.)	<i>m/e "</i> (Int.)	<i>m/e "</i> (Int.)	m/e "(Int.)
kation					
$\overline{Ph_8Ge_4X_2^+}$	940 (3)	972 (10)	1066 (2)		
$Ph_8Ge_4X^+$		940 (3)	986 (3)		
$Ph_7Ge_4X_2^+$	863 (1)				
$Ph_7Ge_4X^+$			909 (1)		
$Ph_6Ge_4X_2^+$	786 (1)				
$Ph_6Ge_3X_2^+$	712 (1)	744 (13)	838 (49)	744 (32)	838 (26)
$Ph_6Ge_3X^+$		712 (2)			
$Ph_5Ge_3X_2^+$	635 (3)	667 (4)	761 (43)	667 (2)	761 (1)
Ph ₅ Ge ₃ X ⁺					683(2)
$Ph_4Ge_3X_2^+$		590 (1)	684 (9)		
$Ph_5Ge_2X^+$	547 (3)	563 (5)		563 (6)	609 (3)
Ph ₅ Ge ₂ ⁺				531 (1)	
$Ph_4Ge_2X_2^+$		518 (1)	612 (25)	518 (1)	
$Ph_4Ge_2X^+$	470 (2)	486 (1)	532	486 (1)	534 J (A) b
$Ph_{3}Ge_{2}X_{2}^{+}$		441 (4)	535 (11)	441 (11)	535
$Ph_3Ge_2X^+$			455		
$Ph_2Ge_2X_2^+$			458	364 (2)	458 (6)
$Ph_2Ge_2X^+$					378 (1)
Ph_3GeX^+				337 (2)	
Ph ₃ Ge ⁺	305 (100)	305 (100)	305 (100)	305 (100)	305 (100)
Ph ₂ GeX ⁺				260 (2)	
Ph_2Ge^+		228 (11)	228 (40)	228 (21)	228 (28)
PhGe ⁺		151 (17)	151 (89)	151 (19)	151 (67)

" m/e des höchsten Einzelpeaks im Isotopenmuster. ^b Überlagerte Fragmente.

Schwingungsspektren

Die Schwingungsspektren der fünf Verbindungen werden beherrscht von den 24 substituenten-unabhängigen Phenylgruppenschwingungen und den 6 vom Ge-Substituenten abhängigen Schwingungen. Von letzteren Schwingungen koppeln ferner die modes t, u und x [12] in unspezifischer Weise mit Ge-Ge- und Ge-Se-Schwingungen, so dass die IR- und Raman-Spektren aller fünf Verbindungen weitgehend gleich aussehen.

Spezifische Schwingungen sind einzig ν (Ge-O) für Ph₈Ge₄O₂ (812vs und 503vs cm⁻¹) und ν (Ge-S) für Ph₈Ge₄S₂ (409s, 382m und 374m cm⁻¹) und Ph₆Ge₃S₂ (400sh, 396vs und 386s cm⁻¹).

Röntgendaten

Tabelle 4 enthält die Kristalldaten der Verbindungen $Ph_8Ge_4O_2$, $Ph_6Ge_3S_2$ und $Ph_6Ge_3Se_2$. Die Dioxan-Analoga $Ph_8Ge_4S_2$ und $Ph_8Ge_4Se_2$ sind nach Pulveraufnahmen isostrukturell, konnten jedoch bisher noch nicht in Form von Einkristallen gewonnen werden.

(Fortsetzung s S. 192)

TABELLE 3

¹³C-NMR-PHENYLSIGNALE IN CDCl₃-LÖSUNG (δ (ppm) gegen TMS)

Verbindung	δ(C(1))	$\delta(C(2,6))$	$\delta(C(3,5))$	δ(C(4))
	ipso	ortho	meta	para
Ph ₈ Ge ₄ O ₂	139.8	133.7	128.0	129 2
Ph ₈ Ge ₄ S ₂	138.4	134.2	128.0	1290
Ph ₈ Ge ₄ Se ₂	137.7	134 4	128.0	129.0
Ph ₆ Ge ₃ S ₂ Satz 1 "	h	133.5	128 2	129 8
Satz 2	136.6	134.4	128.2	1294
Ph ₆ Ge ₃ Se ₂ Satz 1 ^a	h	133.5	128.1	1296
Satz 2	136 6	134.5	128 2	1293

" Intensitätsverhältnis Satz $1/Satz 2 = 1/2^{-b}$ Signal nicht mit Sicherheit zuordenbar

TABELLE 4

```
KRISTALLDATEN DER VERBINDUNGEN Ph8Ge4O2, Ph6Ge3S2 UND Ph6Ge3Se2
```

	Ph ₈ Ge ₄ O ₂	Ph ₆ Ge ₃ S ₂ "	Ph ₆ Ge ₃ Se ₂	
Kristallsystem	triklin	monoklın	monoklın	
Raumgruppe	ΡĪ	P2/c(?)	$P2_1/c$	
<i>a</i> (pm)	997.4(1)	2010	1277.8(1)	
<i>b</i> (pm)	1052.3(1)	956	1087.5(1)	
c (pm)	1072.7(1)	2003	2414.5(2)	
α (Grad)	76 74(1)			
β (Grad)	74 29(1)	120	95 89(1)	
γ (Grad)	80.79(1)			
$V \times 10^{-6} (\text{pm}^3)$	1048	3333	3337	
Molmasse	939 21	744.54	838 33	
Ζ	1	4	4	
$d_{\rm rontg} ({\rm g}{\rm cm}^{-3})$	1.49	1.48	1.67	
$d_{\rm exp}$ (g cm ⁻³)	1.48	1.50	1.66	
$\mu (cm^{-1})^{b}$	28.1	28 0	48.1	

^{*a*} Daten aus Filmaufnahmen an einem verzwillingten Individuum; Raumgruppe unsicher. ^{*b*} Für Mo- K_{α} -Strahlung.

TABELLE 5

LAGE- UND TEMPERATURPARAMETER VON OCTAPHENYL-1,4-DIOXA-2,3,5,6-TETRAGERMACYCLOHEXAN, Ph₈Ge₄O₂ MIT STANDARD-ABWEICHUNGEN

Atom	x	y	z	U_{11}	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}	1
Ge(1)	1.05700(3)	0.55136(3)	0.64591(2)	0.0326(1)	0.0306(1)	0.0286(1)	- 0.0077(1)	-0.0086(1)	-0 0041(1)	
Ge(2)	0.83095(3)	0.48298(3)	0.65379(2)	0.0297(1)	0.0314(1)	0.0284(1)	-0.0061(1)	- 0.0056(1)	- 0.0015(1)	
0(1)	1.1391(2)	0.6055(1)	0.4754(1)	0.042(1)	0.0356(9)	0.0289(9)	- 0.0085(7)	-0.0033(7)	-0.0077(8)	
C(11)	1.1759(2)	0.4060(2)	0.7236(2)	0.034(1)	0.036(1)	0.031(1)	- 0.005(1)	-0.007(1)	- 0.006(1)	
C(12)	1.1760(3)	0.2792(2)	0.7073(2)	0.042(1)	0.040(1)	0.045(1)	-0.008(1)	- 0.015(1)	- 0.006(1)	
C(13)	1.2704(3)	0.1783(3)	0.7517(3)	0.054(1)	0.036(1)	0.065(2)	- 0.006(1)	- 0.019(1)	- 0.002(1)	
C(14)	1.3623(3)	0.2023(3)	0.8147(3)	0.052(2)	0.051(1)	0.074(2)	0.004(1)	- 0.025(1)	0.002(1)	
C(15)	1.3621(3)	0.3277(3)	0.8351(4)	0.054(2)	0.061(2)	0.080(2)	-0.003(1)	-0.042(1)	-0.007(1)	
C(16)	1.2702(3)	0.4288(3)	0.7893(3)	0.050(1)	0.044(1)	0.058(1)	-0.006(1)	- 0.025(1)	- 0.007(1)	
C(17)	1.0452(2)	0.7047(2)	0.7199(2)	0.035(1)	0.035(1)	0.042(1)	- 0.015(1)	-0.010(1)	-0.002(1)	
C(18)	1.0038(3)	0.6983(3)	0.8554(3)	0.066(2)	0.053(1)	0.043(1)	-0.017(1)	-0.006(1)	- 0.010(1)	
C(19)	0.9916(4)	0.8086(4)	0.9074(3)	0.075(2)	0.079(2)	0.053(2)	- 0.039(2)	-0.005(1)	- 0.008(2)	
C(110)	1.0203(4)	0.9262(3)	0.8261(4)	0.066(2)	0.058(2)	0.085(2)	- 0.045(2)	- 0.017(2)	0.001(1)	
C(111)	1.0616(4)	0.9364(3)	0.6904(4)	0.070(2)	0.039(1)	0.081(2)	-0.018(1)	-0.023(1)	-0.004(1)	
C(112)	1.0746(3)	0.8256(3)	0.6379(3)	0.056(1)	0.041(1)	0.048(1)	-0.012(1)	-0.013(1)	- 0.005(1)	
C(27)	0.7570(2)	0.3557(2)	0.8111(2)	0.029(1)	0.039(1)	0.033(1)	-0.002(1)	-0.008(1)	-0.001(1)	
C(28)	0.6917(3)	0.3973(3)	0.9302(2)	0.050(1)	0.051(1)	0.035(1)	- 0.010(1)	-0.008(1)	-0.010(1)	
C(29)	0.6345(4)	0.3092(4)	1.0418(3)	0.064(2)	0.078(2)	0.027(1)	-0.008(1)	- 0.006(1)	- 0.015(1)	
C(210)	0.6429(4)	0.1783(3)	1.0371(3)	0.063(2)	0.059(2)	0.042(1)	0.009(1)	- 0.003(1)	-0.011(1)	
C(211)	0.7053(4)	0.1355(3)	0.9210(3)	0.060(2)	0.039(1)	0.066(2)	0.004(1)	- 0.003(1)	-0.000(1)	
C(212)	0.7625(3)	0.2239(3)	0.8088(3)	0.054(1)	0.042(1)	0.043(1)	-0.007(1)	0.000(1)	- 0.000(1)	
C(21)	0.6867(2)	0.6287(2)	0.6294(2)	0.034(1)	0.037(1)	0.030(1)	-0.003(1)	-0.004(1)	0.000(1)	
C(22)	0.6932(3)	0.7524(3)	0.6494(3)	0.048(1)	0.042(1)	0.053(1)	- 0.009(1)	-0.011(1)	-0.000(1)	
C(23)	0.5882(4)	0.8534(3)	0.6316(3)	0.065(2)	0.038(1)	0.063(2)	- 0.006(1)	- 0.005(1)	0.006(1)	
C(24)	0.4750(3)	0.8297(3)	0.5935(3)	0.048(2)	0.057(2)	0.056(2)	0.004(1)	-0.008(1)	0.016(1)	
C(25)	0.4651(3)	0.7088(3)	0.5716(3)	0.041(1)	0.067(2)	0.057(2)	- 0.000(1)	-0.012(1)	0.007(1)	
C(26)	0.5718(3)	0.6075(3)	0.5907(3)	0.037(1)	0.052(1)	0.050(1)	0.006(1)	-0.012(1)	0.001(1)	

TABELLE 6

LAGE- UND TEMPERATURPARAMETER VON HEXAPHENYL-1,3-DISELENA-2,4,5-TRIGERMACYCLOPENTAN, Ph₆Ge₃Se₂ MIT STANDARD-ABWEICHUNGEN

Atom	X	л	t,	U_{11}	U_{22}	U_{13}	U_{23}	U_{13}	U_{12}	
Ge(1)	0.74192(3)	- 0 23286(4)	0 14641(2)	0.0419(2)	0.0247(2)	0 0417(2)	0 0012(1)	0.0057(1)	0 0015(1)	
Ge(2)	0 69293(3)	0.07436(4)	0 10385(2)	0.0393(2)	0.0282(2)	0.0379(2)	0 0023(1)	-0.0027(1)	0.0022(1)	
Ge(3)	0 83055(3)	0.07908(3)	0 18026(2)	0 0355(2)	0.0263(2)	0.0382(2)	(0.0006(1))	-0.0021(1)	-0.0000(1)	
Se(1)	0.89683(3)	-0.12312(4)	0.17769(2)	0.0391(2)	0 0291(2)	0 0719(3)	-0.0005(1)	-0.0048(2)	0.0052(1)	
Se(2)	0.59549(3)	-0.10348(4)	0.12283(2)	0 0374(2)	0 0323(2)	0.0621(2)	0.0050(1)	-0.0015(2)	-0.0004(1)	
C(11)	07791(3)	-0.3318(3)	0 0836(1)	0 056(2)	0.032(1)	() 040(2)	- 0.000(1)	0.004(1)	0.004(1)	
C(12)	0.7314(3)	- 0.4455(4)	0 0725(1)	0 064(2)	0.042(2)	0.043(2)	0 000(1)	-0.001(1)	0.004(2)	
C(13)	0.7594(4)	- () 5174(4)	0.0288(2)	0 094(4)	0.041(2)	0.057(2)	-0.009(2)	- 0.007(2)	0.004(2)	
C(14)	0 8317(5)	- 0.4762(6)	-0.0048(2)	0.102(4)	0.072(3)	0.067(3)	-0.023(3)	0.016(3)	0.013(3)	
C(15)	0.8789(6)	- 0 3634(7)	0.0061(2)	0.107(5)	0 104(5)	0.083(4)	- 0.029(3)	0.052(3)	- 0.014(4)	
C(16)	0 8529(4)	- 0.2929(5)	0 0502(2)	0.089(3)	0.060(3)	0.073(3)	0 018(2)	0.035(3)	-0.016(2)	
C(17)	0.7027(3)	-0.3419(3)	0 2047(1)	0.044(2)	0.028(1)	0.042(2)	(1)1000	0.000(1)	0.002(1)	
C(18)	0.6224(3)	-03155(4)	0.2375(2)	0.047(2)	0.051(2)	0.059(2)	0 (006(2)	0.010(2)	() ()(4(2)	
C(19)	0.6000(4)	-03952(5)	0 2794(2)	0 055(2)	0.082(3)	0.064(3)	0.012(2)	0.019(2)	0.002(2)	
C(110)	0.6543(4)	- 0.5034(5)	0 2885(2)	0.072(3)	0.061(3)	0.062(3)	0 017(2)	0 (009(2)	0 021(2)	
C(111)	0.7354(4)	0 5313(4)	0 2559(2)	0 090(3)	0.031(2)	0 059(2)	0 010)2)	- 0 ()09(2)	-0.002(2)	
C(112)	0 7593(3)	- ().45()4(4)	0 2147(1)	0.058(2)	0.040(2)	0.047(2)	0.002(1)	- 0 000(1)	0 (006(1)	
C(21)	0.7511(3)	0.0496(3)	0.0334(1)	0.063(2)	0.035(2)	0 039(2)	0 (0)4(1)	(1000)	0 (0)(0)(1)	

- 0.046(4)	- 0.063(6)	0 014(5)	- 0.016(4)	- 0.016(3)	0.003(1)	0 023(2)	0.045(4)	0 029(2)	0 022(2)	0.011(2)	-0.000(1)	-0.000(1)	-0.006(2)	-0.022(2)	-0.006(2)	-0.001(1)	-0.000(1)	-0.010(2)	-0.002(2)	0.001(2)	- 0.005(2)	0.000(1)
0 013(3)	0.052(5)	0.049(4)	0.029(3)	0.007(2)	-0.008(1)	-0.032(2)	-0.068(4)	- 0.026(3)	-0.002(3)	-0.001(2)	-0.001(1)	0.005(2)	0.010(2)	0.015(2)	-0.001(1)	-0.005(1)	-0.001(1)	0.002(1)	0.024(2)	0.011(2)	-0.001(2)	0.000(1)
-0.018(3)	-0.033(3)	0.004(3)	0.011(4)	0.006(3)	0.004(1)	- 0.015(2)	-0.011(3)	- 0.010(3)	- 0.014(2)	- 0.001(2)	-0.000(1)	0.001(1)	0.007(2)	- 0.002(2)	- 0.001(2)	0.001(1)	0.003(1)	0 004(1)	0.011(2)	0.000(2)	-0.003(1)	-0.001(1)
0.052(3)	0.055(3)	0.051(3)	0.066(4)	0.046(2)	0.055(2)	0.073(3)	0.111(5)	0.122(5)	0.092(4)	0.058(2)	0.034(1)	0.067(2)	0.078(3)	0.056(2)	0.062(2)	0.049(2)	0.039(2)	0.044(2)	0.058(2)	0 044(2)	0.043(2)	0.047(2)
0.101(5)	0 092(5)	0.088(5)	0.150(7)	0.126(5)	0.029(1)	0.058(3)	0.078(4)	0.049(3)	0.055(3)	0.039(2)	0.032(1)	0.033(2)	0.034(2)	0.055(2)	0.060(2)	0.048(2)	0.025(1)	0.053(2)	0.063(3)	0.053(2)	0.049(2)	0.039(2)
0 139(6)	0.274(12)	0.199(9)	0.089(4)	0.068(3)	0.042(2)	0.085(3)	0.112(5)	0 083(4)	0.076(3)	0.065(2)	0.042(1)	0.048(2)	0.066(3)	0.060(2)	0.041(2)	0.043(2)	0 045(2)	0.054(2)	0 062(3)	0.086(3)	0.068(3)	0.052(2)
- 0.0068(2)	- 0.0567(2)	- 0.0671(2)	- 0.0278(2)	0.0216(2)	0.0986(1)	0.0486(2)	0.0457(3)	0.0909(3)	0.1399(2)	0.1431(2)	0.1664(1)	0.1470(2)	0.1371(2)	0.1484(2)	0.1675(2)	0.1762(1)	0.2546(1)	0.2687(1)	0.3211(2)	0.3595(1)	0.3458(4)	0.2929(1)
- 0 0249(6)	- 0.0426(7)	0.0173(7)	0.0905(8)	0.1112(6)	0.2101(3)	0.2303(5)	0.3262(6)	0.3971(5)	0.3797(5)	0.2861(4)	0.1922(3)	0.3090(3)	0.3930(4)	0.3607(4)	0.2451(4)	0.1598(4)	0.1183(3)	0.1020(4)	0.1374(5)	0.1866(5)	0.1997(4)	0.1663(3)
0.7011(6)	0.7439(9)	0.8338(8)	0.8828(5)	0.8403(4)	0.5937(3)	0.5312(4)	0.4572(5)	0.4451(5)	0.5087(4)	0.5819(4)	0.9438(3)	0.9180(3)	0.9952(4)	1.0999(4)	1.1266(3)	1.0488(3)	0.7900(3)	0.6882(3)	0.6642(4)	0.7394(4)	0.8411(3)	0.8657(3)
C(22)	C(23)	C(24)	C(25)	C(26)	C(27)	C(28)	C(29)	C(210)	C(211)	C(212)	C(31)	C(32)	C(33)	C(34)	C(35)	C(36)	C(37)	C(38)	C(39)	C(310)	C(311)	C(312)

Die Kristallstrukturen der Verbindungen $Ph_8Ge_4O_2$ und $Ph_6Ge_3Se_2$ wurden bestimmt und bis zu *R*-Werten von 0.031, bzw. 0.036 verfeinert. Die Tabellen 5 und 6 enthalten Lage- und Temperaturparameter.

Struktur des $Ph_8Ge_4O_2$

Figur 1 zeigt das gefundene zentrosymmetrische Molekül (' zentrosymmetrisch ergänzte Atome, Ph(11) C(11) bis C(16), Ph(12) C(17) bis C(112) usw.). Tabelle 7 fasst die zur Beschreibung des Ge₄O₂-Rings relevanten Bindungslängen und -winkel zusammen (Ge-C-Abstände 193.4(3) bis 194.9(3) pm).

Das $Ph_8Ge_4O_2$ -Molekül liegt in Sesselkonformation vor, ist ideal zentrosymmetrisch und besitzt ferner eine angenäherte Symmetrieebene durch die beiden O-Atome sowie eine die Ge-Ge-Bindungen halbierende C_2 -Achse, d.h. die Gesamtsymmetrie ist näherungsweise C_{2h} . Der Ge-Ge-Abstand liegt mit 244.8(1) pm im Normalbereich 243 bis 247 pm für Ge-Ge-Bindungen [13], die Ge-O-Abstände sind mit 178 bis 179 pm dem oberen Drittel des Abstandsbereiches 170 bis 181 pm [10] für diese Bindung zuzuordnen. Der Ge-O-Ge-Winkel von 126.9(1)° ist vergleichsweise klein (Schwankungsbereich 128 bis 140° in ähnlichen Verbindungen [10]).

Struktur des Ph₆Ge₃Se₂

Figur 2 zeigt das gefundene Molekül (Ph(11) C(11) bis C(16). Ph(12) C(17) bis C(112) usw.). Tabelle 8 fasst die zur Beschreibung des Ge_3Se_2 -Rings relevanten Bindungslängen und -winkel zusammen (Ge-C-Abstände 194.2(4) bis 196.7(4) pm).

Das $Ph_6Ge_3Se_2$ -Molekül besitzt eine angenäherte C_2 -Achse durch Ge(1) und die Ge-Ge-Bindung, d.h. der Ge_3Se_2-5-Ring nimmt Halbsessel-Konformation an. Die

Fig. 1 Gefundenes $Ph_8Ge_4O_2$ -Molekül ('zentrosymmetrisch ergänzte Atome, Ph(11) C(11) bis C(16), Ph(12) C(17) bis C(112) usw.).

TABELLE 7

Abständ Ebene de Ge-Aton	e von der er ne (pm)	Torsion (°)	swinkel			Bindungsläng (pm)	en	Bindungswinkel (°)	
Ge(1)	0	Ge(2')	O(1)-Ge(1)	Ge(2)	- 53.1	Ge(1)-Ge(2)	244.8	Ge(2)-Ge(1)-O(1)	106.7
Ge(2)	0	O(1)	Ge(1)-Ge(2)	O(1')	41.9	Ge(1)-O(1)	178.6	Ge(1)-Ge(2)-O(1')	106.7
O(1)	61.0	Ge(1)	Ge(2)-O(1')	Ge(1')	- 53.1	Ge(2)-O(1')	178.1	Ge(1)-O(1)-Ge(2')	126.9

ABSTÄNDE, BINDUNGS- UND TORSIONSWINKEL IM Ge4O2-RING DES Ph8Ge4O2 "

" Standardabweichungen: Atomabstände ± 0.1 pm; Bindungswinkel $\pm 0.1^{\circ}$; Torsionswinkel $\pm 0.1^{\circ}$.

TABELLE 8

ABSTÄNDE.	BINDUNGS-	UND	TORSIONSWINKEL	IM	Ge2Se2	-RING	DES Ph	GeaSe	, <i>a</i>
									4

Abstän der Ebe Ge-Atc	de von ene der ome (pm)	Torsionswinkel (°)		Bindungsläng (pm)	en	Bindungswinkel (°)	
Ge(1)	0	Ge(1) Se(2)-Ge(2) Ge(3)	- 44.3	Ge(2)-Ge(3)	241.5	Se(1)-Ge(1)-Se(2)	113.1
Ge(2)	0	Se(2) Ge(2)-Ge(3) Se(1)	50.9	Ge(1)-Se(1)	236.8	Se(2)-Ge(2)-Ge(3)	103.0
Ge(3)	0	Ge(2) Ge(3)-Se(1) Ge(1)	- 32.7	Ge(1)-Se(2)	236.3	Se(1)-Ge(3)-Ge(2)	101.3
Se(1)	86.2	Ge(3) Se(1)-Ge(1) Se(2)	5.5	Ge(2)-Se(2)	237.0	Ge(1)-Se(1)-Ge(3)	100.8
Se(2)	112.1	Sc(1) Gc(1)-Sc(2) Ge(2)	24.3	Ge(3)-Se(1)	235.9	Ge(1)-Se(2)-Ge(2)	96.5

⁴ Standardabweichungen: Atomabstände ± 0.1 pm; Bindungswinkel $\pm 0.1^{\circ}$; Torsionswinkel $\pm 0.1^{\circ}$.

Fig. 2. Gefundenes Ph₆Ge₃Se₂-Molekül (Ph(11) C(11) bis C(16), Ph(12) C(17) bis C(112) usw.).

gleiche Konformation war in idealer Ausprägung für das Tetrahydrofuran-Analogon $(Ph_2Ge)_4Se$ gefunden worden [14]. Auch die Ge-Se-Abstände sind mit 236 bis 237 pm in beiden Verbindungen annähernd gleich. Dagegen ist die Ge-Ge-Bindung mit 241.5(1) pm für ein phenyliertes Polygerman ungewöhnlich kurz.

Experimenteller Teil

Ausgangschemikalien: $[(Cl_3CCOO)Ph_2Ge]_2$ und $Cl_2Ph_4Ge_2$ [3], Ph_2GeCl_2 [5]. C/H- und S-Analysen im mikroanalytischen Labor des Inst. für Org. Chemie der Univ. Mainz; Ge- und Se-Bestimmung durch Neutronenaktivierung im MPI für Chemie, Mainz. Massenspektren: Spektrometer CH4 der Fa. Varian-MAT; Elektronenstossionisierung 70 eV; Simulation der Isotopenmuster mit dem Programm PEEKS [15]. NMR-Spektren: Spektrometer WP 80 DS der Fa. Bruker. Schwingungsspektren: MIR, Proben als KBr-Presslinge, Spectrophotometer 457 der Fa. Perkin–Elmer; FIR, Proben als Polyethylenpresslinge, Gerät Bruker IFS 113: Raman, Proben mikrokristallin in Kapillare, Gerät Coderg T 800, Anregung Ar-Laser 488 nm. Röntgenbeugung: Kappa-Diffraktometer CAD 4 der Fa. Enraf-Nonius; Rechnungen im Rechenzentrum der Univ. Mainz (HB-66/80) mit MULTAN-78 [16], SHELX-76 [17] und lokalen Programmen. Dichtebestimmung: Schwebemethode in Thouletscher Lösung.

Darstellung von Octaphenyl-1,4-dioxa-2,3,5,6-tetragermacyclohexan $Ph_8Ge_4O_2$ [5,6]

In 80 ml trockenem Aceton suspendiert man 1.00 g (1.28 mmol) $[(Cl_3CCOO)Ph_2Ge]_2$. Dazu gibt man 1 ml Wasser, rührt noch 5 min, filtriert und kristallisiert den Rückstand zweimal aus je ca. 30 ml Chloroform um. Das Produkt bildet farblose, schräge Quader. Ausbeute: 0.5 g (83%), Lit. [6] 0.7 (116%?). Einkristalle: Eindiffusion von Petrolether in eine benzolische Lösung.

Darstellung von Octaphenyl-1,4-dithia-2,3,5,6-tetragermacyclohexan Ph₈Ge₄S₂ mit H₂S

Durch eine Suspension von 1.16 g (1.50 mmol) $[(Cl_3CCOO)Ph_2Ge]_2$ in einer Mischung von 50 ml Aceton und 1 ml Pyridin wird 30 min lang eine lebhafter Strom von trockenem H₂S geleitet. Nach einer Stunde Rühren wird filtriert und der Rückstand zweimal aus je ca. 120 ml Chloroform umkristallisiert. Man erhält 0.58 g Ph₈Ge₄S₂ in Form farbloser, schräger Quadern (80%).

Umsetzung von [(Cl_3CCOO)Ph₂Ge]₂ mit Na₂S

Eine Lösung von 0.40 g (1.66 mmol) Na₂S · 9H₂O in 2 ml Wasser wird zu einer Aufschlämmung von 0.50 g (0.64 mmol) [(Cl₃CCOO)Ph₂Ge]₂ in 50 ml Aceton getropft. Nach 5 min wird im Vakuum zur Trockene eingedampft, mit 50 ml Wasser digeriert, filtriert und der Rückstand aus ca. 10 ml Chloroform umkristallisiert. Man erhält 0.15 g farbloser Kristalle, von denen ein Teil zwischen 208-218°C schmilzt, der andere bis 255°C. Das Massenspektrum zeigt, dass neben Ph₈Ge₄O₂ (Molekülpeak bei m/e = 940) und Ph₈Ge₄S₂ (Molekülpeak bei m/e = 972) eine Substanz mit der Molmasse 956 vorliegt, die entweder der siebengliedrige Ring Ph₈Ge₄O₃ oder der gemischte sechsgliedrige Ring Ph₈Ge₄OS sein kann. Eine zusätzliche Ge-S-Emission im Raman-Spektrum spricht für letztere Möglichkeit. Das Gemisch liess sich weder durch fraktionierte Kristallisation noch durch Dünnschichtchromatographie trennen. Die Umsetzung ist nur bedingt reproduzierbar. Darstellung von Octaphenyl-1,4-dithia-2,3,5,6-tetragermacyclohexan $Ph_8Ge_4S_2$ mit Na_2S

Zu einer Lösung von 1.05 g (2.0 mmol) $ClPh_2Ge-GePh_2Cl$ in 100 ml Aceton werden 0.48 g (2.0 mmol) $Na_2S \cdot 9H_2O$ in 5 ml Wasser getropft, wobei sich das Reaktionsgemisch augenblicklich trübt. Nach 12 h wird zur Trockene eingedampft, mit 200 ml Chloroform aufgekocht und heiss filtriert. Das Lösungsmittel wird abgezogen und der Rückstand zweimal aus Chloroform umkristallisiert. Ausbeute: 0.65 g (67%).

Darstellung von Octaphenyl-1,4-diselena-2,3,5,6-tetragermacyclohexan Ph₈Ge₄Se₂

In eine Suspension von 0.40 g (5.0 mmol) schwarzem Selenpulver in absolutem Ethanol, dem ein Tropfen Wasser zugesetzt ist, trägt man vorsichtig 0.40 g (10.5 mmol) gemörsertes Natriumborhydrid ein. Nach kurzer Zeit erwärmt sich der Ansatz und färbt sich braun. Zur vollständigen Umsetzung wird kurz zum Sieden erhitzt, wobei eine farblose, leicht trübe Lösung entsteht [8]. Nach Abkühlen auf Raumtemperatur tropft man 2.10 g (4.00 mmol) ClPh₂Ge–GePh₂Cl in 150 ml Aceton zu. Dabei fällt sofort ein farbloser Niederschlag aus. Nach 4 h zieht man die Lösungsmittel im Vakuum ab und extrahiert den rosafarbenen Rückstand 2 Tage lang mit 200 ml Chloroform im Soxleth-Apparat. Man erhält 1.10 g farbloses Ph₈Ge₄Se₂, das nochmals aus ca. 450 ml Chloroform umkristallisiert wird (35%).

Darstellung von Hexaphenyl-1,3-dithia-2,4,5-trigermacyclopentan Ph₆Ge₃S₂

Zu einer Lösung von 1.00 g (1.91 mmol) $Ph_4Ge_2Cl_2$ und 0.57 g (1.91 mmol) Ph_2GeCl_2 in 50 ml Aceton gibt man 0.93 g (3.87 mmol) $Na_2S \cdot 9H_2O$ in 5 ml Wasser. Nach 4 h wird filtriert, der Rückstand in 150 ml heissem Methanol aufgenommen und wieder filtriert. Das Ungelöste gibt nach Umkristallisieren aus Chloroform 0.25 g $Ph_8Ge_4S_2$ (Fp. 283–284°C).

Aus der methanolischen Lösung fällt binnen einer Woche die Titelsubstanz in Form sechseckiger Plättchen aus, die durch Auflösen in 10 ml Chloroform und Fällen mit Methanol nochmals gereinigt werden. Ausbeute: 0.50 g (37%).

Darstellung von Hexaphenyl-1,3-diselena-2,4,5-trigermacyclopentan Ph₆Ge₃Se₂

Wie bei $Ph_8Ge_4Se_2$ beschrieben stellt man aus 0.50 g (6.3 mmol) Selen und 0.50 g (13.2 mmol) Natriumborhydrid in 50 ml Ethanol eine Selenidlösung her, die man über eine Umkehrfritte zu einer Lösung von 2.10 g (4.00 mmol) $Ph_4Ge_2Cl_2$ und 1.19 g (4.00 mmol) Ph_2GeCl_2 in 100 ml Aceton drückt. Dabei entsteht sofort ein hellbrauner Niederschlag. Man rührt noch eine halbe Stunde und destilliert dann die Lösungsmittel im Vakuum ab. Der Rückstand wird mit 150 ml siedendem Chloroform digeriert. Die filtrierte Lösung engt man ein, bis sich Kristalle abzuscheiden beginnen. Man filtriert, gibt bis zur Trübung Methanol zu, filtriert wieder und wiederholt diese Prozedur, bis das in Methanol schwer lösliche $Ph_8Ge_4Se_2$ vollständig abgetrennt ist. Durch Einengen der Mutterlauge und weitere Zugabe von Methanol kann man das reine $Ph_6Ge_3Se_2$ in Form von sechseckigen Plättchen erhalten. Ausbeute: 0.68 g(20%). Einkristalle: Überschichten der Chloroform-Lösung mit Methanol.

Ausserdem fallen 1.5 g $Ph_8Ge_4Se_2$ an, das mit $Ph_6Ge_3Se_2$ verunreinigt ist; Fp. 293-297 °C.

Strukturanalyse von $Ph_8Ge_4O_2$ und $Ph_6Ge_3Se_2$

Tabelle 9 enthält Angaben über die untersuchten Kristalle, die Gewinnung der

	Ph ₈ Ge ₄ O ₂	Ph ₆ Ge ₃ Se ₂	
Kristallform	schräger Quader	Saule mit Sechseck- Querschnitt	
Kristallausmasse (mm)	$0.70 \times 0.44 \times 0.28$	$0.36 \times 0.55 \times 0.13$	
Messbereich " bis sın ϑ/λ (pm ⁻¹)	0.0065	0 0065	
Intensitätsverlust (%)	13 "	6 ⁽	
unabhängige Reflexe	4777	7645	
Reflexe mit $I > 3\sigma(I)$	3700		
$> 2\sigma(I)$		5384	
Verfeinerte Parameter	246	372	
Reflexe pro Parameter	15	14.5	
R	0.031	0.036	
gewichtetes R ^d	0.042	0 052	
Gewichts-g d	0.0012	0.0057	

TABELLE 9

ÜBERBLICK ZU DEN STRUKTURBESTIMMUNGEN AM Ph₈Ge₄O₂ UND Ph₆Ge₃Se₂

^{*a*} Monochromatisierte Mo- K_{α} -Strahlung, $\omega/2\vartheta$ -modus. ^{*b*} Lineare Korrektur. ^{*c*} Unregelmässige Intensitätsschwankungen; direkte Anpassung an die Standardreflexe ^{*d*} Gewichtssetzung gemäss $w = k/(\sigma^2(F) + gF^2)$.

Intensitätsdaten und das Ergebnis der Verfeinerung. Die Schweratomlagen wurden mit MULTAN-78 [16] bestimmt, die O- und C-Positionen durch gewichtete Differenz-Fourier-Synthesen. Vor Abschluss der Verfeinerung wurden die H-Atomlagen einer Differenz-Fourier-Synthese entnommen, eingesetzt, aber nicht mitverfeinert. Im letzten Verfeinerungscyclus waren alle Parameteränderungen < 0.1 σ (Ph₈Ge₄O₂), bzw. < 0.2 σ (Ph₆Ge₃Se₂). Tabellen der gemessenen und berechneten Strukturamplituden und der H-Atomparameter können angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (Projekt Dr 109/6-3) und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

Literatur

- 1 L. Ross und M. Dräger, Z. Anorg. Allg. Chem., im Druck.
- 2 L. Ross und M. Dräger, J. Organomet. Chem., 194 (1980) 23.
- 3 D. Simon, K. Häberle und M. Dräger, J. Organomet. Chem., 267 (1984) 133.
- 4 E.J. Bulten und J.G. Noltes, Tetrahedron Lett., (1966) 3471
- 5 K. Kühlein und W.P. Neumann, Liebigs Ann. Chem., 702 (1967) 17.
- 6 F. Glockling und R.E. Houston, J. Chem. Soc., Dalton Trans., (1973) 1357
- 7 K. Triplett und M.D. Curtis, Inorg. Chem., 14 (1975) 2284.
- 8 D.L. Klayman und T.S. Griffin, J. Amer. Chem. Soc., 93 (1973) 197.
- 9 A. Blecher und M. Dräger, Angew. Chem., 91 (1979) 740; Angew. Chem. Int. Ed. Engl., 18 (1979) 677.
- 10 L. Ross und M. Dräger, Chem. Ber., 115 (1982) 615; Z. Naturforsch B, 39 (1984) 868.
- 11 L. Ross und M. Dräger, J. Organomet. Chem., 199 (1980) 195.
- 12 D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- 13 M. Dräger, L. Ross und D. Simon, Rev. Silicon, Germanium, Tin and Lead Comp., 7 (1983) 299.
- 14 L. Ross und M. Dräger, Z. Anorg Allg. Chem., 472 (1981) 109
- 15 B. Mattson und E. Carberry, J. Chem. Educ., 50 (1973) 511.
- 16 P. Main, York 1978.
- 17 G. Sheldrick, Cambridge 1976.